

Design complex systems
using multiple modeling tools
with the ASSERT toolchain

Multi-Paradigm Model-based SW Engineering

Large scale software engineering often has to address issues related to heterogeneous development

environments or run-time platforms. This is true for example when one tries to mix hand-written and
automatically generated code, or when the system has to be deployed over a distributed architecture.

This short technical paper presents a new SW engineering process, along with its supporting tools, that

enables the integration of systems whose components can be developed using disparate modeling
technologies, as well as hand-crafted code.

A model-based approach to SW engineering is indispensable for producing robust, standards-

adhering code especially in cases of complex developments where hand-crafted code is more

expensive and more error-prone. Equally important, with a full model-driven code generation, the
sources themselves become simply an intermediate artifact of the build process that’s readily

transformed to executable code. In this manner, the system is understood and analyzed solely on
the model level, promoting understandability, maintainability and modifiability. Robust modeling

notations and supporting tools are keys to actually transforming SW development from an art into

a rigid engineering discipline. The proliferation of different and sometimes overlapping modeling
notations (Simulink, Lustre) tools and initiatives (MDA, CORBA) in various domains of SW

development reflects the importance that is attached to SW modeling from both industry and
academia.

SW engineering is addressing multiple problem domains; for example, in a space system it is

prudent to use synchronous, data-flow oriented languages (such as Scade or Matlab/Simulink) to

define control laws and mathematical algorithms, and to specify behaviour of the system
(orchestration of the calls, decisions based on results from the algorithms, fault detection and

recovery, protocols, etc.) with state-machines (e.g. ObjectGeode/SDL). As might be expected, a
single modeling notation / tool / methodology cannot be expected to be ideally suited to all cases.

For small-scale projects this is usually not an issue as a single modeling methodology can be used

for the scope of the entire development with good results. On the other hand, large-scale systems
comprise multiple sub-systems often constructed by different teams. The requirements for each

system are often disparate enough to warrant or even mandate use of different notations, tools or
methodologies.

In such a scenario, interfacing with and integrating all the independently developed subsystems
into a comprehensive whole, is a technically daunting task. What’s more, currently, this can only be

done with hand-crafted code thus negating many of the advantages of a model-driven approach.
In other words, the reliability of the independent subsystems may be excellent since the code was

automatically generated but the links between the subsystems are implemented with error-prone
hand-crafted code. Additionally, while it might be possible to reason about verifiability or

schedulability properties for each of the independent subsystems the lack of an overall model

spanning the entire system does not allow similar analysis at the system level.

This short paper describes a system-level SW engineering methodology to tackle the above issues.
The methodology was originally conceived in the context of the ESA-led ASSERT Integrated

Project (in the FP6 IST programme) and has been subsequently elaborated and fleshed-out with

additional tool support in the course of follow-up GSTP ESA contracts. SEMANTIX had a pivotal role
in all these projects and owns a large part of the IP related to the tool-chain that supports the

methodology.

In what follows, we present the methodology and then describe in more details the tools that
support it.

SEMANTIX Information Technologies S.A.

www.semantix.gr

Design complex systems with the ASSERT toolchain page 4 of 13

 ESTEC, 2008-12-04

The ASSERT Methodology

In a nutshell, the conundrum faced by ASSERT was how to allow the teams developing individual

components to choose the modeling methodology that best addresses the respective component’s
requirements and at the same time ensure seamless, model-driven integration at the system level

as shown in Figure 1.

Figure 1: ASSERT context

Note, with respect to Figure 1, that individual components are developed using modeling notations
that support behavior modeling. In contrast to that, the system-level logic in the centre is more

geared towards interfacing between the subsystems. As such it is more amenable to be described
by a notation that is more oriented towards the description of data and the overall system

architecture than towards describing actions. The recognition of this dichotomy of dynamic (i.e.
behavioral) versus static (i.e. data and architecture oriented) modeling notations is essential to

understand the ASSERT approach.

ASSERT introduced a top-level model of the overall system that describes the individual

subsystems and their interfaces in an abstract manner, which is modeling-tool independent. This
was achieved by utilizing two notations:

• AADL (Architecture analysis and design language) in its graphical form is used to describe the

high-level system model, i.e. the subsystems, their non-functional properties (e.g. WCET, the
worst case execution time, etc) and their interfaces. It is also used to describe the system’s

deployment configuration (e.g. which subsystem is assigned to which CPU/network address).

• ASN.1 (Abstract Syntax Notation number One) is used to describe the messages exchanged

between subsystems in a language and modeling tool independent format.

The 1st step in the ASSERT methodology is to model the overall architecture of the system and

the data that are exchanged at the interfaces of the subsystems. Once this is done (using

AADL/ASN.1), the 2nd step is to “mediate” this system-level interface and data model to

subsystem-specific data models (for the data relevant to each subsystem). This is depicted in

Figure 2.

SEMANTIX Information Technologies S.A.

www.semantix.gr

Design complex systems with the ASSERT toolchain page 5 of 13

 ESTEC, 2008-12-04

Figure 2. Mediating to tool-specific data models.

Note that for each sub-system only the relevant data structures need to be mediated. I.e., only the
information that is exchanged at that subsystem’s interfaces needs to be re-modeled from

AADL/ASN.1 into the subsystem’s modeling tool of choice. Note also that this re-modeling is fully

automated and tool-supported.

This modeling mediation accomplishes two things:
• it ensures that the various subsystems are modeled in a consistent way as far as their

interfaces and data are concerned. Even though different subsystems will model the same

date structure in different ways (e.g. in MATLAB/Simulink, SDL or SCADE), all these data

models will trace their ancestry from a common data model. In others words, each of the
subsystems will use equivalent data models for the data structures it exchanges with the

other subsystems even though they are expressed in different notations. This avoids
integration problems while at the same time allowing maximum latitude as to the choice of

the modeling notation / tool that is best suited for each subsystem.
• it provides a starting point for the modeling of the various subsystems in the form of the

interface and data model of relevant data structures and communicating subsystems.

Moreover, this is done in each subsystem’s native modeling notation and is integrated into

the respective tool’s graphical environment.

Using the architecture and interface/data model of the system - in the native notation - as a
springboard, each subsystem’s behavior and internal data structures are subsequently modeled.

Once a subsystem’s entire modeling effort is concluded, the code for the respective sub-system is

generated by the respective tool as depicted in Figure 3. This is the 3rd step of the methodology.

SEMANTIX Information Technologies S.A.

www.semantix.gr

Design complex systems with the ASSERT toolchain page 6 of 13

 ESTEC, 2008-12-04

Ada/C manually

written code

Lustre/SCADE

behavior model

Simulink/Matlab

behavior model

SDL/ObjectGeode

behavior model

SSystem A

(SDL/ObjectGeode)

SSystem D

(Lustre/SCADE)

SSystem B

(Simulink/Matlab)

SSystem C

(Ada/C)

System

Architecture

and

Interface

Description

SDL/

ObjectGeode

data model

Simulink/

Matlab

data model

Ada/C data

structures

Lustre/

SCADE

data model

expressed in

AADL/

ASN.1

Subsystem-

specific data

models

(automatically

derived from the

global system

model)

Subsystem-specific behavior models

(created by engineers)
sources
sources

sources

for

system

A
sources
sources

sources

for

system

B

sources
sources

sources

for

system

Csources
sources

sources

for

system

D

Figure 3. Behavior modeling (by human engineers) builds upon the automatically generated data models and

concludes with the generation of sources.

It should be noted that the methodology can also accommodate subsystems that are implemented
by hand (without using any modeling tool for the generation of sources). It also handles the more

frequent case of subsystems that are built with a hybrid approach whereby part of the code is

automatically generated from the models (e.g. skeleton implementations) and the rest is fleshed
out manually.

Once the implementations for the various subsystems are available, the next, 4th step of the
methodology is simply the integration of the subsystems. The challenge at this step is to ensure

that the subsystems can communicate effectively according to the system and interface

architecture laid out in the 1st step. Different tools (even for the same notation) use different code

generation patterns and different strategies to represent the data structures that have been
modeled in them. Therefore, the methodology foresees code-mediation whereby data “bridges” are

automatically generated in order to mediate (at runtime) between the data structures used by the

various subsystems. This effectively allows a subsystem modeled in Lustre whose code is
generated using SCADE to exchange data structures with a subsystem modeled in SDL whose code

is generated using ObjectGeode.
At first inspection, this approach points to a fully-meshed graph whereby automatically generated

bridges bilaterally mediate between the data structures exchanged from one component to
another. However, such a fully-meshed approach is cumbersome for a number of ways. Instead, a

star topology is used whereby the automatically generated bridges mediate between each

modeling tool’s native data structure format to an ASN.1 format. In this approach ASN.1 functions
as the “hub” of the star topology. This is depicted in part (b) of Figure 4.

SEMANTIX Information Technologies S.A.

www.semantix.gr

Design complex systems with the ASSERT toolchain page 7 of 13

 ESTEC, 2008-12-04

Figure 4. ASSERT uses ASN.1 as the core encoding mechanism for mediating between different internal

formats.

Note that the exchange of messages between the various subsystems (mediated in ASN.1 format

according to Figure 4, part b) takes place over a distributed processing infrastructure which is not
depicted in Figure 4. In ASSERT, this infrastructure is called “ASSERT VM” and is providing

functionality similar to that of a CORBA ORB.

Note also that all the “mediators” (the grey arrows in Figure 4) are automatically generated from

the AADL/ASN.1 system model. These mediators perform two functions:
• they implement the conversion of the data structures that are exchanged at the interfaces of

the various subsystems between their native representation (e.g. as Simulink data structures)

and their equivalent representation in ASN.1.
• they are responsible for routing information and invoking methods across the integrated

system by using the underlying distributed processing infrastructure (the ASSERT VM).

These automatically generated mediators provide in effect the glue that integrates the subsystems
together.

The 4-steps of this methodology are depicted in Figure 5 for a hypothetical system that is

comprised of three subsystems:

• subsystem A: modeled in Lustre/SCADE

• subsystem B: modeled in SDL/ObjectGEODE

• subsystem C: modeled in Matlab

1. The process begins with the overall system specification in AADL and ASN.1. At this point, the

designer simply defines the subsystems that compose the overall system and their interfaces.
Interface definition includes the ASN.1 specifications of the messages exchanged between

subsystems. This is where details about types and constraints of message members are specified.

It also includes non-functional attributes of the interfaces (like periodicity). Figure 6 depicts a
typical view of the graphical system modeler.

SEMANTIX Information Technologies S.A.

www.semantix.gr

Design complex systems with the ASSERT toolchain page 8 of 13

 ESTEC, 2008-12-04

1 - Define Common Data model in ASN.1 and System

Architecture in AADL

2 – Derive Modeling Tool Specific Data Models

4 – Derive mediation

(gluing) code

Data Model in Lustre

Data Model in ASN.1

Component A Glue

Integrated

System

System Model in

AADL

Data Model in SDL Data Model in Simulink

SSystem A modeled in

Lustre

3.a – Model Behavior

in Lustre and

generate code using

SCADE

SSystem A

implementation

SSystem B modeled in

SDL

3.b – Model Behavior

in SDL and generate

code using

ObjectGEODE

SSystem B

implementation

SSystem C modeled in

Matlab

3.c – Model Behavior

in Matlab and

generate code

SSystem C

implementation

Component B Glue

Component C Glue

LEGEND

ASSERT

methodology step

models created by

hand

Code

automatically

generated by

ASSERT tools

SSystem

implementation

methodology (one

of the

methodologies

supported by

ASSERT)

1

2

3

4

Models

automatically

generated by

ASSERT tools

Code automatically generated by

modeling tools supported by ASSERT

asn1scc codecs

Figure 5. Schematic of the ASSERT methodology.

Figure 6. System architecture interfaces modeling in AADL/ASN.1

SEMANTIX Information Technologies S.A.

www.semantix.gr

Design complex systems with the ASSERT toolchain page 9 of 13

 ESTEC, 2008-12-04

2. The system specification is processed by the ASSERT toolchain, and semantically equivalent

definitions of the data messages are created for each modeling tool's language (e.g. Lustre

definitions for SCADE subsystems, Matlab definitions for Matlab/Simulink subsystems, etc). This is
shown in Figure 7. This way, the teams building the individual subsystems know that their

message representations are semantically equivalent and that no loss of information can occur at
subsystem borders. At the same time, modeling tool-specific project skeletons are automatically

generated, allowing the subsystem developers to easily start working in their modeling tool of

choice.

Figure 7. Generation of semantically equivalent models for the exchanged data in various modeling

notations/tools.

3. When functional modeling is completed, the modeling tools' code generators are invoked, and C

code is generated. Modeling tools generate code in different ways. Even though (thanks to step 2)
the data structures of the generated code across different modeling tools are carrying semantically
equivalent information, the actual code generated cannot interoperate as is; see Figure 8.

Figure 8. Different tools generate syntactically incompatible representations for semantically equivalent code.

Therefore, integrating the code generated by different modeling tools requires “data bridges” to be

built that translate the data structures from one modeling tool to those of the other and vice versa.
Manually creating these data bridges is a very error-prone process, and one that would have to be

repeated if the messages are even slightly changed.

4. To solve this integration problem, ASN.1 is used as the center of a star formation amongst all

modeling tools. Data bridges are created automatically by the toolchain’s code generators that
translate the data at runtime between (a) the data structures of the modeling tools and (b) the

data structures generated by the space certifiable ASN.1 compiler (Asn1scc) built by SEMANTIX. In
this manner, any modeling tool can interoperate with any other, via ASN.1 encodings. In parallel,

Asn1scc is invoked to create the necessary ASN.1 encoders and decoders, for all the messages.

Code from the ASN.1 compiler (Asn1scc), code from the modeling tools and code from the “data
bridges” are compiled and linked together.

Tools
The build process described above is supported by a collection of tools.

SEMANTIX Information Technologies S.A.

www.semantix.gr

Design complex systems with the ASSERT toolchain page 10 of 13

 ESTEC, 2008-12-04

Model and Code Integration Tools
The build process described in the previous chapter makes use of the following integration tools:

asn2aadlPlus : translates the ASN.1 specification of the messages exchanged between

subsystems into the corresponding AADL definitions, which are then imported by the system
modeler. The system designer can then use it to visually perform the overall system modeling in

AADL (see Figure 6).

asn2dataModel : translates the ASN.1 specification into the semantically equivalent modeling

tools notations. Currently, this tool supports SCADE5/Lustre, SCADE6/Lustre, ObjectGeode/ SDL
and Matlab/Simulink notations. To assist with legacy development, the tool also generates C and

Ada data definitions.

buildSupport : creates skeleton project files in modeling tool-specific formats based on the

overall system model in AADL/ASN.1.

aadl2glueC : creates the “data bridges” that translate at runtime the data between (a) the data
structures of the modeling tools and (b) the data structures generated by our space certifiable

ASN.1 compiler.

ASN.1 Space Certifiable Compiler (Asn1scc)
Asn1scc (ASN.1 Space Certifiable Compiler) is an ASN.1 compiler built by SEMANTIX. Asn1scc
parses a subset of ASN.1 (International Standard 8824-1) and generates unaligned PER encoders

and decoders for the C programming language that make (a) no calls to malloc() or to any other
function that allocates memory dynamically and (b) no system calls, thus creating perfectly

portable code.

Asn1scc achieves the “no dynamic memory” goal by applying two simple principles: (a) The

generated C structures do not contain any pointers (b) All fields are either primitive types or static
arrays or other structures that don’t include any pointers. The maximum number of bytes required

for encoding any ASN.1 type in unaligned PER is determined by Asn1scc during the grammar

processing and is available via a generated macro. In this manner, the size of all required memory,
both for the C data structures as well as the buffers where the PER streams will be written, is

known at compile time and consequently, all memory can be reserved statically.

Automatic ICD generator
An Interface Control Document (ICD) is a document identifying interface data that is exchanged

between software components. ICDs typically allow a visual overview of the messages that are

exchanged between applications. Such documents are authored manually after a cumbersome
inspection of the exchanged data structures and after also accounting for the marshalling logic that

will transform them to the wire format. Therefore, the process of creating an ICD is error-prone
and updates of these documents are awkward, especially in projects with big data models that

change often.

The automatic ICD generator is a tool that takes as input a formal data model in ASN.1, as defined

in the overall system model, and produces the equivalent ICD automatically (Figure 9). The
generated document contains tables for each type defined in the ASN.1 data model and each table

has as many rows as the number of the ASN.1 fields (see figure below). The minimum and
maximum numbers for each field represent the number of bits required to encode the specific field

using the unaligned Packed Encoding Rules (uPER).

SEMANTIX Information Technologies S.A.

www.semantix.gr

Design complex systems with the ASSERT toolchain page 11 of 13

 ESTEC, 2008-12-04

Figure 9. ICD Generator creates an browsable Interface Control Document based on the ASN.1 grammar of

the exchanged messages.

The ICD generator can be used early in the design process - as soon as the overall system model

in AADL/ASN.1 is completed. This provides ICDs to the development teams, thus enabling those
teams that choose to work with legacy developing techniques to interoperate with the rest of the

subsystems (the ones developed in modeling tools).

Automatically generated GUIs for TM/TC

In the overall AADL system design, the designer can specify the subsystems for which a graphical

user interface should be created. The toolchain reads the interface information of these
subsystems and automatically generates code for interactive graphical user interfaces that operate

on these interfaces. These GUIs provide real-time access to running systems, allowing information
exchange, e.g. invocation of telecommands or receiving real-time telemetry. Telemetry can then be

piped to plotting and monitoring applications, for easy real-time monitoring of systems.

SEMANTIX Information Technologies S.A.

www.semantix.gr

Design complex systems with the ASSERT toolchain page 12 of 13

 ESTEC, 2008-12-04

Figure 10. The automated GUIs allow for easy real-time monitoring of systems

Figure 11. Users of the automated GUIs can invoke Telecommands and read Telemetry in real-time.

SEMANTIX Information Technologies S.A.

www.semantix.gr

Design complex systems with the ASSERT toolchain page 13 of 13

 ESTEC, 2008-12-04

Conclusion

The ASSERT methodology along with its support tools significantly improves the design process of

complex systems. It was field tested in two multi-modeling tool scenarios during the development
of the ASSERT project, with the MA3S/PFS Pilot Project being the most prominent one. The

resulting binaries were successfully downloaded and executed on the embedded LEON processors

that ESA is using, proving in a conclusive manner the feasibility of multi-modeling tool
development.

Download links

The latest version of the toolchain, Asn1scc and the ICD generator is available from the following

link:
http://www.semantix.gr/assertTools/

For more info

ESA:
 Maxime.Perrotin@esa.int

SEMANTIX:
 assertTools@semantix.gr

